
FPV-Tutorial - SS23
Materialien für Manuel’s FPV-Tutorium im Sommersemester 2023

Manuel Lerchner

Zuletzt aktualisiert: 21. April 2024

FPV Tutorial - SS23
About
Materialien für Manuel’s FPV-Tutorium im Sommersemester 2023.

• Die Materialien sind privat erstellt und können Fehler enthalten. Im Zweifelsfall
haben immer die offiziellen Lehrunterlagen Vorrang.

• Alle Zusammenfassungen dieses Repositories können über manuellerchner.github.io/fpv-
tutorial-SS23/summary.pdf heruntergeladen werden.

• Die Tutor-Slides sind unter manuellerchner.github.io/fpv-tutorial-SS23/slides.pdf verfügbar.

Found an error, or want to add something?
1. Fork this Repository
2. Commit and push your changes to your forked repository
3. Open a Pull Request to this repository
4. Wait until the changes are merged
5. A Github Action will automatically render the PDFs and deploy the static content to Github

Pages

Contributors

1

https://manuellerchner.github.io/fpv-tutorial-SS23/summary.pdf
https://manuellerchner.github.io/fpv-tutorial-SS23/summary.pdf
https://manuellerchner.github.io/fpv-tutorial-SS23/slides.pdf
https://github.com/ManuelLerchner/fpv-tutorial-ss23/graphs/contributors

Inhaltsverzeichnis

FPV Tutorial - SS23 . 1
About . 1
Found an error, or want to add something? . 1
Contributors . 1

Week 1: Implications, Assertions and Stronges Postconditions 4
Implications . 4

Definition of Implications . 4
Truth Table . 4
Examples . 4

Assertions . 5
Example for MiniJava . 5
Strength of Assertions . 6
Definition of Assertions-Strength . 6
Special Assertions . 6

Strongest Postconditions . 6
Example . 6

Week 2: Preconditions, Postconditions and Local Consistency 8
Weakest Preconditions . 8

Rules . 8
Example . 8

Local Consistency . 9
Example Local Consistency . 9

Week 3: Loop Invariants 11
What is a loop invariant? . 11
The Problem with Loops . 11
Finding a Loop Invariant . 12
Evaluating different Loop Invariants . 12

Example Loop Invariants . 12
Tips for Finding a Loop Invariant . 12

Week 4: Termination Proofs 13
Why are Termination Proofs Necessary? . 13
What is a Termination Proof? . 13
How to do a Termination Proof? . 13

Week 5: OCaml 15
Basic Syntax . 15

Comments . 15
Variables . 15
Functions . 15
Tuples . 15
Lists . 15
Records . 15
If-then-else . 15
Pattern Matching . 15

2

Example Programs . 16
Advanced Hello World . 16

Debuging OCaml . 16
Using the #use command in utop . 16

Week 6: List Module 17
Lists in OCaml . 17

Example Length . 17
Binary Search Tree . 17

Binary Search Tree in OCaml . 17

Week 7: Advanced List Operations 19
List Reduce . 19

List.fold_left . 19
List.fold_right . 19

Week 8: Lazy Lists 21
Lazy lists in OCaml . 21
Partial Application . 21

Week 9: Side Effects, Units and Exceptions 23
Side Effects . 23

Example File IO . 23
Exceptions . 23

Week 10: Modules 25
10.1 Module Types . 25
10.2 Module . 25
10.3 Functors . 26

Week 11: Big Step Semantics 27
Big Step for OCaml Expressions . 27

Tuple . 27
List . 27
Global Definition . 27
Local Definition . 28
Function Call . 28
Pattern Matching . 28
Built-in Operators . 28

Example . 28

Week 12: Equational Reasoning 30
Example: Prove that fact n = n * fact (n - 1) . 30

Week 13: Threads 32
Returning values from threads . 32

3

Week 1: Implications, Assertions
and Stronges Postconditions

Implications
Implications are the the key for understanding FPV. They show up in topics such as Weakest
Preconditions, Strongest Postconditions, Proof by Induction / Structural Induction. . .

Definition of Implications
As you remeber from the “Diskrete Strukturen” course, an implication is a statement of the form
A =⇒ B. It is read as:

• “A implies B”
• “If A is true, then B is true”

It’s syntactic sugar for the following statement:

A =⇒ B ⇐⇒ ¬A ∨ B

This is a very important statement, because it can be used to simplify complex statements, if you
can’t remember the specific rules for implications.

Truth Table

A B A =⇒ B

F F T
F T T
T F F
T T T

Examples
Example 1:

x = 1 =⇒ x ≥ 0
⇐⇒ ¬(x = 1) ∨ (x ≥ 0)
⇐⇒ (x ̸= 1) ∨ (x ≥ 0)
⇐⇒ true

Example 2:

4

A =⇒ (B =⇒ A)
⇐⇒ ¬A ∨ (B =⇒ A)
⇐⇒ ¬A ∨ (¬B ∨ A)
⇐⇒ ¬A ∨ A ∨ ¬B

⇐⇒ true ∨ ¬B

⇐⇒ true

Assertions
Assertions are used to annotate specific points in a program and to check if a given expression is
true at that point. If the expression is false, the program will terminate.

This is usefull if you only want to allow certain values for a variable, because otherwise the program
would not work as expected. They can also be used to prove the correctness of a program. Which is
the main topic of this course.

Example for MiniJava

Abbildung 1: Flow Diagram

This corresponds to the following program:

void main() {
var n = read(); //reads an arbitrary integer
var i = 0;
assert(A);

var x = 0;
assert(B)
while (i < 10) {

x = x + n;
i = i + 1;
assert(B);

};

write(x);

5

assert(C);
}

The challenge is to find strong and precise assertions for the specific points in the program which
allow us to prove the correctness of the program. In this case, we want to prove that the program
always prints n · 10 to the console. This corresponds to Assertion C ⇐⇒ x = n · 10.

Remember that whenever the programm-flow reaches an assertion, the assertion must be true.
Otherwise the program will terminate.

Strength of Assertions
Two assertions A and B can have different strengths. This happens for example if assertion A is
more precise than assertion B.

For example, the assertion A = 5 is stronger than the assertion B = 5 ∨ B = 6, because it is more
specific. The assertion A only allows the value 5, while the assertion B allows the values 5 and 6.

This makes sense intuitively. But in order to use it in practice, we need to define what it means for
an assertion to be stronger than another assertion.

Definition of Assertions-Strength
We say that an assertion A is stronger than an assertion B, if A implies B.

Using this definition, we can compare different assertions and determine if they are:

• Equivalent: A =⇒ B and B =⇒ A
• Ordered (eg. A is stronger): A =⇒ B
• Uncomparable: A ̸ =⇒ B and B ̸ =⇒ A

Special Assertions
Remember that true and false are also valid assertions. They are called tautologies and contra-
dictions respectively.

How do they fit into the strength definition?

• Tautologies: A =⇒ true for all A
– This means that every assertion is stronger than true thereby making true the weakest

assertion.
• Contradictions: false =⇒ A for all A

– This means that false is stronger than every assertion thereby making false the strongest
assertion.

In practice those assertions show up in the following cases:

• Tautologies: If you have no information about the variables at a specific time in the program,
you can use true as an assertion to express this.

• Contradictions: If you have a point that is never reached in the program, you can use false
as an assertion to express this. The only way for the program to meet all assertions is to never
reach such a point.

Strongest Postconditions
The strongest postcondition of a statement s and a precondition A is the strongest assertion B that
holds after the statement s has been executed.

Example
Consider the following program:

void main() {
var i=2;
var x=6;

6

assert(x=3*i && i>=0);

i=i+1;

//state at this point:
//i = 3
//x = 6
//since the i in the assertions refers to the old value of i, before the statement i=i+1 was executed, the assertion x=3*i is now broken (x=6 != 3*3)

//can we find a new assertion which explicitly computes the new value of x?
assert(C);

}

What is the strongest postcondition of the statement i=i+1 and the precondition x==3*i && i>=0?
In other words what is the strongest assertion which we can insert in the second assertion?

This can be written as:

SPJi = i + 1K(x = 3 ∗ i ∧ i ≥ 0)

To compute the assertion after the statement i=i+1 we basically need to undo the statement i=i+1
because the original assertion refered to the old value of i, before it was updated.

Note: This only works for updates of variables. Other assignments might be alot more
complicated.

We first compute the undo of the statement i=i+1:

UndoJi = i + 1K ≡ i = i − 1

Then we replace the varibale i (which has already gotten updated) inside the assertion with the
undo-ed statement:

B := x = 3 ∗ i ∧ i ≥ 0
−→ x = 3 ∗ (i − 1) ∧ (i − 1) ≥ 0

≡ x = 3(i − 1) ∧ i ≥ 1
=: C

In total we have:

C := SPJi = i + 1K(x = 3 ∗ i ∧ i ≥ 0)
≡ x = 3 ∗ (i − 1) ∧ i ≥ 1

7

Week 2: Preconditions,
Postconditions and Local
Consistency

Weakest Preconditions
Weakest Preconditions are used calculate the minimum requirements, which need to hold bevore an
assignment, so that a given Assertion after the assignment holds.

Its written as:

WPJsK(e)

Where s is a statement and e is an assertion.

Rules
The rules for calculating the weakest precondition of a MiniJava statement are as follows:

WPJx = read()K(A) ≡ ∀x.A

WPJwrite(expr)K(A) ≡ A

WPJx = exprK(A) ≡ A[expr/x]
WPJcK(Bfalse, Btrue) ≡ (c ∧ Btrue) ∨ (¬c ∧ Bfalse)

≡ (c =⇒ Btrue) ∧ (¬c =⇒ Bfalse)

Example
Consider the following program:

void main() {
var r = 5;
assert(A);
var t = 3*r;
assert(t>=0);

}

We want to find the minimal requirements which need to hold at assert(A) so that assert(t>=0)
holds after var t = 3*r;.

We can calculate this using the following formula:

WPJt = 3 ∗ rK(t ≥ 0)
≡ 3 ∗ r ≥ 0
≡ r ≥ 0 =: A

8

Now we know, that for the assertion t>=0 to hold after var t = 3*r;, the assertion r>=0 needs to
hold before var t = 3*r;.

Local Consistency
Two assertions A and B are locally consistent, if A is stronger than the weakest precondition of
B. This is written as:

A =⇒ WPJsK(B)

Note that it is not required that A = WPJsK(B). Because a stronger assertion than
required is also fine.

Local consistency is important: It mathematically proves that whenever the assertion A holds, then
the assertion B holds after the statement s. This can be used to prove that a program actually
computes what it is supposed to compute.

Example Local Consistency
Consider the following program:

void main() {
var x = 30;
assert(x>25); //A
x=x+5;
assert(x!=0); //B

}

A ≡ x > 25
B ≡ x ̸= 0
s ≡ x = x + 5

At the moment all the Assertions are arbitrary, and there is no garantee that they actually hold
during the execution of the program.

To prove them, we need to:

1. Show that all the assertions are locally consistent
2. We arrive at true at the start of the program

Local Consistency of A and B

We can calculate the weakest precondition of B and s as follows:

WPJsK(B)
≡ WPJx = x + 5K(x ̸= 0)
≡ x + 5 ̸= 0
≡ x ̸= −5 =: B′

We can check the local consistency of A and B by checking if A =⇒ B′ holds.

This is the case, because:

A =⇒ B′

≡ x > 25 =⇒ x ̸= −5
≡ true

So we proved that A and B are locally consistent. This means that whenever A holds, then B holds
after the statement s.

9

Weakest Precondition of A

If we compute the weakest precondition of A and x=30; we get:

WPJx = 30K(x > 25)
≡ 30 > 25
≡ true =: A′

This is obviously also locally consistent, because true =⇒ A′ ≡ true =⇒ true ≡ true.

Since we arrived at true, we know that the whole chain of assertions from the start to the end of
the program holds and is locally consistent.

This means that we proved that when the assertion at the start (aka. true) holds,then the assertion
A and consequently Assertion B holds.

In this case, we proved that in all instances of the program, the variable x cannot be 0 at the end.

10

Week 3: Loop Invariants

What is a loop invariant?
A loop invariant is an assertion that holds in each iteration of a loop. Finding such a loop invariant
is needed to calculate weakest preconditions for programs with loops, because the normal way of
finding the preconditions does not work for loops.

The Problem with Loops
Lets say you are trying to calculate the weakest precondition for the following program:

Abbildung 2: Program with loop

The normal way of finding the weakest precondition would be to start at the end of the program
and work your way backwards.

I ≡ WPJi < nK(X, K)
≡ (i < n ∧ K) ∨ (i ≥ n ∧ X) (So we need to calculate X and K)

X ≡ WPJwrite(x)K(x = n!)
≡ x = n! (All good so far)

K ≡ WPJi := i + 1K(J)
≡ J [(i + 1)/i] (K depends on J so we need to find J)

J ≡ WPJx := x ∗ iK(I)
≡ I[x ∗ i/x] (J depends on I so we need to find I)

So we came to a conclusion that in order for us to compute the weakest precondition I we need to
calculate K and J . But J itself depends on I so we have a circular dependency and therefore we
cannot calculate I directly.

11

Finding a Loop Invariant
Since we cannot directly compute loop invariants we need to find a way to come up with them
indirectly.

We can do this by guessing a loop invariant I that is strong enough to prove the correctness of
the program. We do this by checking that our assertions (which are constructed using our guessed
loop invariant) are locally consistent.

If we have shown local consistency we just need to check if the starting point is annotated with true.
Then we have successfully proven the correctness of the assertion at the end of the program.

Evaluating different Loop Invariants
For the program above a suitable loop invariant would be: I := x = i! ∧ 0 < i ≤ n. But how do we
come up with this loop invariant?

For this we look at some other loop invariants and evaluate them:

Example Loop Invariants
1. I := x ≥ 0:

• This loop invariant is not strong enough to prove the correctness of the program. Since
it it fails the local consistency check. (I ̸ =⇒ WPJi < nK(X, K))

• It was obvious that this loop invariant fails, because it does not contain any precise
information about the value of x, which is needed to prove x = n!.

2. I := i = 0 ∧ x = 1 ∧ n = 0:
• This loop invariant is way to strong, and is overall a bad choice because it would fail for

any n ̸= 0.
3. I := x = i! ∧ 0 < i ≤ n:

• This loop invariant is strong enough to prove the correctness of the program. Since it
passes the local consistency check. (I =⇒ WPJi < nK(X, K))

• Using this loop invariant we can prove that true holds at the start of the program, which
means that the program and its assertions is correct.

• Why does this loop invariant work?
– It encapsulates all “relevant” information about the variables which change in the

loop (x and i).
– Combined with the false-branch of the if-statement it follows that i ≤ n ∧ i ≥ n =⇒

i = n. Which is exactly what is needed to prove x = n! after we exit the loop.
– It is weak enough to not disturb the proving of true at the start of the program.

Tips for Finding a Loop Invariant
There exist some old videos from the lecture “EIDI2” from the year 2017 that explain how to find
loop invariants. The video is in german and is not relevant for this years course, but it still contains
some useful tips for finding loop invariants.

• https://ttt.in.tum.de/recordings/Info2_2017_11_24-1/Info2_2017_11_24-1.mp4 [Nico Hart-
mann 2017]

12

https://ttt.in.tum.de/recordings/Info2_2017_11_24-1/Info2_2017_11_24-1.mp4

Week 4: Termination Proofs

Why are Termination Proofs Necessary?
Every program containing a loop is potentially dangerous. Under the right circumstances, a loop
can run forever, causing the program to hang. This is called an infinite loop.

In general, programs which don’t eventually halt are of little use and can be considered as faulty.

For example, the following program contains an infinite loop and will never print “Finished”:

let i = 17;
let j = 5;
while (i > j){

i += 2;
j += 1;

}
console.log("Finished");

On the other hand, the following program will always halt:

let i = 17;
let j = 5;
while (i > j){

i += 1;
j += 2;

}
console.log("Finished");

But how can we be sure that a program will always halt? In some cases it is not so obvious as in the
examples above.

This is where termination proofs come in.

What is a Termination Proof?
In a termination proof, you generally try to prove that a certain variable only takes on positive
values inside a loop. Furthermore, you try to prove that the variable is decreased by at least one in
each iteration of the loop.

This means that the variable will eventually reach zero (or less) and the cannot be entered again.
Because this would violate the Assertion we defined.

But just coming up with arbitrary assertions and then claiming that they prove termination is not
enough. We also need to show that those assertions are localy consistent.

How to do a Termination Proof?
Bevore we can perform a termination proof, it is necessary to understand what the loop actually
does.

13

In the second example above our intuition tells us that the loop will eventually terminate. Because
the variable j is increased by two in each iteration, while i is only increased by one. This means
that j will eventually overtake i and the loop will terminate.

With this understanding we can define an auxiliary variable r which represents this intuition.

Since we only want to prove that the loop terminates, we just need to prove true at the end of the
program.

In general, we need to insert the following assertions / statements

Abbildung 3: Flowchart with auxiliary variable

Notice that we need both these assertions to prove termination:

• r > 0 at the beginning of the loop
• r > re at the end of the loop, right bevore r = re

Now the task is to show the following, we have proven that the loop terminates:

• local consistency of all assertions
• arrived at true at the start of the program
• The special assertions r ≥ 0 and r > re are also localy consistent

14

Week 5: OCaml

Basic Syntax
Comments
(* This is a comment *)

Variables
let x = 1;;

Functions
let f x = x + 1;;
let succ: int -> int = fun x -> x + 1;;

Tuples
let x = (1, true);;

Lists
let x = [1; 2; 3];;
let y = 1 :: 2 :: 3 :: [];;

Records
type person = { name: string; age: int };;
let x = { name = "John"; age = 42 };;
let name = x.name;;

If-then-else
let x = if 3 < 6 then "1" else "2";;

Pattern Matching
let x = match 3 with

| 1 -> "1"
| 2 -> "2"
| _ -> "else";;

let y = match "up" with
| "up" -> (0, 1)
| "down" -> (0, -1)
| "left" -> (-1, 0)
| "right" -> (1, 0)

15

Example Programs
Advanced Hello World

let welcome_string = "lmaCO ot emocleW ,!dlroW olleH"

let rec char_iterator sentence =
if sentence = "" then ()
else

let head = String.get sentence 0 in
let tail = String.sub sentence 1 (String.length sentence - 1) in
char_iterator tail;
print_char head

(* Call Function: Result will be visible in the console when loaded via utop *)
let _ = char_iterator welcome_string

Debuging OCaml
Using the #use command in utop

This method works best for single files containing the code you want to debug. The #use command
works by just copy-pasting the entire content of the file into the utop-environment. It also shadows
previous definitions of variables and functions.

1. Enter into the root-directory of the project and run dune build to initially build the project.

dune build

2. Open utop via dune utop src

dune utop src

In all projects you will encounter, dune is configured in a way that will allow this command to
work.

This will open utop with the project’s src-directory as the current working directory.

3. Reload the files

• Instead of closing and reopening utop every time you change something in the files, you
can use the #use command to load the files again.

• But you need to be careful, because older definitions may still be around after reloading
the file.

#use "src/main.ml";;

16

Week 6: List Module

Lists in OCaml
Lists in ocaml are basically linked lists. They are defined as follows:

let my_list = [1; 2; 3; 4; 5]

Since they are linked lists, you don’t have direct access to the elements in the list. You can only
access the head and the tail of the list. The head is the first element in the list and the tail is the
rest of the list. The head is an element and the tail is a list. The tail can be an empty list.

let my_list = [1; 2; 3; 4; 5]

let head = List.hd my_list (* head = 1 *)
let tail = List.tl my_list (* tail = [2; 3; 4; 5] *)

Since Linked lists are recursive in nature, most of the functions that operate on lists are recursive.
For example, the length function is defined as follows:

Example Length
let rec length l =

match l with
| [] -> 0
| _ :: xs -> 1 + length xs

• This basically means that the length of list l = [a1, a2, . . . , an]︸ ︷︷ ︸
list

can be recursively defined as

– length([a1, a2, . . . , an]︸ ︷︷ ︸
l

) = 1 + length([a2, . . . , an]︸ ︷︷ ︸
tail l

).

• Since we need a base case for the recursion, we define the length of an empty list to be 0.
– length([]) = 0.

Many other functions on lists are defined recursively. For example, the reverse function is defined as
follows:

Binary Search Tree
Binary Search Tree in OCaml
A binary search tree is a binary tree where the value of the left child is less than the value of the
parent and the value of the right child is greater than the value of the parent. The following is an
example of a binary search tree:

type tree =
| Empty
| Node of int * tree * tree

let my_tree =
Node(6,

Node(3,

17

Node(1, Empty, Empty),
Node(4, Empty, Empty)

),
Node(8,

Node(7, Empty, Empty),
Node(9, Empty, Empty)

)
)

The Tree type is defined as follows:

type tree =
| Empty
| Node of int * tree * tree

This means that a tree is either an empty node or a node with a left subtree, a value and a right
subtree. The left and right subtrees are also trees. The value is an integer.

The syntax Node of int * tree * tree means that the constructor Node takes three arguments.
The first argument is an integer and the second and third arguments are trees. The result of the
constructor is a value of type tree.

Since Binary Search trees are again recursive in nature, most of the functions that operate on them
are recursive. For example, the function insert is defined as follows:

Example Insert

let rec insert v t =
match t with
| Empty -> Node(v, Empty, Empty)
| Node(y, l, r) ->

if v < y then
Node(y, insert v l, r)

else if v > y then
Node(y, l, insert v r)

else
t

It takes a value v and a tree t and returns a new tree with the value v inserted into the tree t. If
the value v is already present in the tree t, then the same tree t is returned.

It works as follows:

• If the tree is empty, then the value v is inserted into the tree as the root node.

• If the tree is not empty:

– If the value v is less than the value of the root node, then the value v is inserted into the
left subtree.

– If the value v is greater than the value of the root node, then the value v is inserted into
the right subtree.

– Else nothing is done and the same tree is returned.

As you can see from this example, it is not possible to change the value of a node in a tree. This is
because the tree is immutable.

If you want to change the value of a node, you have to create a new tree with the new value.

This means, that if we need to insert a value in the right subtree of a node, we have to create a
completely new tree with the new value inserted, and then replace the right subtree of the node
with the new tree.

At first this seams unnecessary and inefficient, but in practise it is not that big of a deal. This is
because the compilers of functional programs are in general very good at optimizing the code, since
they can make more assumptions about the code due to the functional nature of the language. This
means that the compiler can do a lot of optimizations that are not possible in imperative languages.

18

Week 7: Advanced List Operations

List Reduce
The List module contains a number of useful functions for working with lists. You can find the
documentation for the List module here.

Lets look at the List.reduce functions:

List.fold_left

Fold left is a function that takes a reducer function, an initial value, and a list. It then applies the
reducer function to each element of the list, starting with the initial value, and then eating itself
through the list from left to right.

It works just like the Stream.reduce function in Java

List.fold_left (fun acc x -> acc + x) 0 [7; 8; -9; 10];;
- : int = 16

If we split up the steps we get something like this:

list 7 8 -9 10
fold_left acc l[0] l[1] l[2] l[3]

0 7 8 -9 10
7 8 -9 10

15 -9 10
6 10

16

In each step we combine the accumulator with the next element in the list, and then use that as the
accumulator for the next step.

It is called fold_left because it implicitly groups the elements of the list from left to right.

list = [7, 8, −9, 10]
fold_left(f, 0, list) = f(f(f(f(0, 7), 8), −9), 10)

List.fold_right

List.fold_right is similar to List.fold_left except that it groups the elements of the list from
right to left.

It has a different type signature than List.fold_left:

List.fold_right (fun x acc -> acc + x) [7; 8; -9; 10] 0;;
- : int = 16

list 7 8 -9 10
fold_right l[0] l[1] l[2] l[3] acc

19

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

list 7 8 -9 10
7 8 -9 10 0
7 8 -9 10
7 8 1
7 9
16

list = [7, 8, −9, 10]
fold_right(f, list, 0) = f(7, f(8, f(−9, f(10, 0))))

20

Week 8: Lazy Lists

A lazy list is a list that is not fully evaluated until it is needed. This is useful for representing infinite
lists, or lists that are too large to fit in memory.

Examples of infinite lists include the list of all natural numbers, the list of all prime numbers, and
the list of all Fibonacci numbers.

Lazy lists in OCaml
One way to implement lazy lists in OCaml is to use the Lazy module. But we are going to define
our own lazy list type, which we will call 'a llist.

type 'a llist = Cons of 'a * (unit -> 'a llist)

This type definition is a bit tricky. It says that a lazy list consists of a value of type 'a and a
function that returns another lazy list. The function is called a thunk. It is a function that takes no
arguments and returns a lazy list. The thunk is used to delay the evaluation of the tail of the list.

Here is an example of a lazy list of natural numbers:

let rec from n = Cons (n, fun () -> from (n + 1))

It basically says that the lazy list from n consists of the value n and a thunk that returns the lazy
list from (n + 1).

Here is an example of a lazy list of Fibonacci numbers:

let rec fib_step a b = Cons (a, fun () -> fib_step b (a + b))

The parameters a and b are the two previous Fibonacci numbers. The lazy list fib_step a b
consists of the value a and a thunk that returns the lazy list fib_step b (a + b). Of course, the
first two Fibonacci numbers are 0 and 1, so we can define the lazy list of all Fibonacci numbers as
follows:

let fib = fib_step 0 1

This list is infinite, but since its generation is lazy, we can still make use of it.

Partial Application
Functions in OCaml are curried by default. This means that a function that takes two arguments is
actually a function that takes one argument and returns a function that takes another argument.
For example, the function (+) is defined as follows:

let (+) x y = x + y

This is equivalent to the following definition:

let (+) = fun x -> fun y -> x + y

The function (+) takes one argument x and returns a function that takes another argument y and
returns the sum of x and y.

We can partially apply a function by passing it only some of its arguments. For example, we can
define a function inc that adds 1 to its argument as follows:

21

let inc = (+) 1

let x = inc 5
val x : int = 6

The List module defines a function map that takes a function f and a list xs and returns a list of the
results of applying f to the elements of xs. We can partially apply map to define a function double
that doubles all the elements of a list:

let double = List.map ((*) 2)

let xs = double [1; 2; 3]
val xs : int list = [2; 4; 6]

Also the inc function defined above can be used with map:

let xs = List.map inc [1; 2; 3]
val xs : int list = [2; 3; 4]

Which is equivalent to:

let xs = List.map ((+) 1) [1; 2; 3]
val xs : int list = [2; 3; 4]

22

Week 9: Side Effects, Units and
Exceptions

Side Effects
In functional programming, side effects are a way of interacting with the outside world. For example,
printing to the screen, reading from a file, or reading from the keyboard are all side effects. They
are called side effects because they happen outside of the control of the program. In other words,
the program cannot control when the user types something on the keyboard, or when the user clicks
the mouse, or when data arrives from the network.

This also means that repeated calls to a function with side effects may produce different results. For
example, if a function reads from the keyboard, then each time it is called, it may read a different
value. This is in contrast to a function that does not have side effects, which will always return the
same value when called with the same arguments. Those so called pure functions are the ones we
have been writing so far.

Side effects are not necessarily bad. In fact, they are necessary for a program to be useful. However,
they do make it harder to reason about the program. For example, if a function has side effects,
then it is not enough to look at the function to understand what it does. You also need to know
what side effects it has. This is in contrast to a pure function, which you can understand just by
looking at the function itself.

Example File IO
Let’s look at an example of a function with side effects. The following function reads the first line of
a file and returns it as a string.

let read_file (filename : string) : string =
let ic = open_in filename in
let row = input_line ic in
close_in ic;
row

This function has side effects because it reads from a file. It is not a pure function because it does
not always return the same value when called with the same arguments.

Writing to a file works similarly. The following function writes a string to a file.

let write_file (filename : string) (row : string) : unit =
let oc = open_out filename in
output_string oc row;
close_out oc

Exceptions
Exceptions are a way of handling errors. They are called exceptions because they are exceptional.
They may occur in the normal course of a program, but they are not expected to occur. For example,
if a function reads from a file, then it may fail if the file does not exist. This is an exceptional case
because the file is expected to exist.

23

But sometimes we want exceptions to occur. For example if we read to the end of a file, then we
want to know that we have reached the end of the file. Ocaml has a special exception for this case
called End_of_file. We can use this exception to detect when we have reached the end of a file.

let rec read_file (filename : string) : string list =
let ic = open_in filename in
let rec read_loop () =

try
let row = input_line ic in
row :: read_loop ()

with End_of_file ->
[]

in
let result = read_loop () in
close_in ic;
result

The function read_file reads all the lines of a file and returns them as a list of strings.

24

Week 10: Modules

In Ocaml, a module is a collection of types, values, and functions. Modules are used to organize
code and to avoid name clashes. Modules can be nested, and they can be parameterized by other
modules.

10.1 Module Types
A module type is a specification of the types, values, and functions that a module must provide.
Module types are used to specify the interface of a module. A module type can be parameterized by
other module types.

A module type is defined using the module type keyword. For example, the following module type
specifies that a module must provide a type t and a function f:

module type ModType = sig
type t
val f : t -> t

end

In Java, a module type is similar to an interface with a generic type parameter.

interface ModType<T> {
T f(T x);

}

10.2 Module
A Module is a similar to a class in Java. It can also implement a module type. A module can be
defined using the module keyword. For example, the following module implements the module type
ModType:

module Mod : ModType with type t = int = struct
type t = int
let f x = x + 1

end

In Java, a module is similar to a class that implements an interface.

class Mod implements ModType<Integer> {
public Integer f(Integer x) {

return x + 1;
}

}

We can call the function f in the module Mod as follows:

Mod.f 1
(* returns 2 *)

25

10.3 Functors
A functor is a function that takes a module as an argument and returns a module. A functor can be
defined in the following way:

module Functor (M : ModType with type t = int) : ModType with type t = M.t = struct
type t = M.t
let f x = M.f (M.f x)

end

This particular functor takes a module of type ModType and returns a module of type ModType. The
returned Module differs from the input module in that the function f is applied twice.

It can be used in the following way:

module Mod2 = Functor(Mod)

Mod2.f 1
(* returns 3 , because inc is applied twice*)

26

Week 11: Big Step Semantics

Big step semantics is a way to define the semantics of a programming language by recursively
reducing the program-expression to a value. The reduction is done in a top-down manner, starting
from the root of the expression tree. The reduction stops when the expression is reduced to a value.

Big Step for OCaml Expressions
Now we are going to define the big step semantics for OCaml expressions.

Tuple
A tuple is a sequence of expressions separated by commas and enclosed in parentheses. The big step
semantics for a tuple is to evaluate each expression in the tuple in order, and return a tuple of the
values of the expressions.

(E1, E2, ..., En) => (V1, V2, ..., Vn)

where E1, E2, ..., En are expressions, V1, V2, ..., Vn are values, and n >= 0.

Abbildung 4: Tuple Evaluation

List
Lists work similarly to tuples. The big step semantics for a list is to decompose the list into its head
and tail, evaluate the head and tail, and return a list with the evaluated head and tail.

H::T => V::W

where H is an expression, T is a list, V is a value, and W is a list.

Abbildung 5: List Evalueation

Global Definition
A global definition is a definition of a value at the top level of a program. The big step semantics for
a global definition is to look up the value of the expression, and return its value.

27

Abbildung 6: Global Definition

Local Definition
A local definition is a definition of a value inside a let expression. The big step semantics for a
local definition is to evaluate the expression, and then substitute the value of the expression for the
variable in the body of the let expression.

Abbildung 7: Local Definition

Function Call
In order to evaluate a function call, we need to evaluate the function expression and the argument
expression. Then we substitute the value of the argument expression for the parameter in the body
of the function expression.

Abbildung 8: Function Call

Pattern Matching
The big step semantics for pattern matching is to evaluate the expression, and then match the value
of the expression with the patterns. If the value matches a pattern, then we substitute the value of
the expression for the variable in the body of the pattern.

Built-in Operators
Built in operators cannot be evaluated directly, we need to compose them into their mathematical
expressions first. For example, 1 + 2 is composed of the integer 1, the operator +, and the integer 2.
The big step semantics for a built-in operator is to evaluate the expressions in the operator, and
then apply the operator to the values of the expressions.

Example
In this example, an expression using recursive functions will be evaluated:

let rec f = fun x -> x + 1
and s = fun y -> y * y

We are going to calculate the value of the expression:

f 16 + s 2

Using the rules defined above, we can evaluate the expression and arrive at the value 21.

28

Abbildung 9: Pattern Matching

Abbildung 10: Built-in Operators

Abbildung 11: Example Big Step Program

29

Week 12: Equational Reasoning

Equational reasoning is a powerful technique for proving properties of programs. We mostly use
it to verify that a function behaves as expected, the main idea is to repeatedly substitute equal
expressions and to perform simplifications until we show that the result is the expected one. We
often do this by performing induction on the structure of the input.

An important aspect to note is that if a function has an auxiliary variable. For example:

let rec fact_aux n acc =
if n = 0 then acc
else fact_aux (n - 1) (n * acc)

let fact_iter n = fact_aux n 1

During the induction step it is often necessary to prove a generalized version of the function for the
proof to go through. In this case we would need to prove that fact_aux n acc = acc * fact n.

let fact_aux n acc = acc * fact n

Example: Prove that fact n = n * fact (n - 1)

Let fact be defined as:

let rec fact n = match n with 0 -> 1
| n -> n * fact (n - 1)

We want to prove that:
fact_iter n = n * fact n

Which corresponds to:
fact_aux n 1 = n * fact n

As mentioned before, we need to prove a generalized version of the function:
fact_aux n acc = acc * fact n

Proof of the generalized version:

Base case n = 0:
fact_aux 0 acc

(fact_aux) = if 0 = 0 then acc else fact_aux (0 - 1) (0 * acc)
(match) = acc
(arith) = acc
(match) = acc * 1
(fact) = acc * (match 0 with 0 -> 1 | n -> n * fact (n - 1))

= acc * fact 0

Induction step n+1: (IH: fact_aux n acc = acc * fact n)
fact_aux (n+1) acc

(fact_aux) = if (n+1) = 0 then acc else fact_aux ((n+1) - 1) ((n+1) * acc)
(match) = fact_aux ((n+1) - 1) ((n+1) * acc)

30

(arith) = fact_aux n ((n+1) * acc)
(IH) = (n+1) * acc * fact n
(arith) = (n+1) * acc * fact ((n+1) - 1)
(match) = acc * ((n+1) * fact ((n+1) - 1))
(fact) = acc * (match n+1 with 0 -> 1 | n -> n * fact (n - 1))

= acc * fact (n+1)

The proof of the generalized version is complete, this means that:

fact_aux n acc = acc * fact n

To proof the original statement we need instantiate the generalized version with acc = 1:

fact_aux n 1
(#) = 1 * fact n
(arith) = fact n

Which completes the proof. We can be sure that fact n = n * fact (n - 1) and that the helper
function fact_aux is correct.

31

Week 13: Threads

In ocaml we can use the Thread module to create threads. The Thread module provides a create
function that takes a function and its arguments and runs it in a new thread. It returns a Thread.t
object, which represents the handle to the thread. We can use the join function to wait for the
thread to finish.

let my_function sec = Thread.delay sec ; print_endline "Hello world!" ;;

let t = Thread.create my_function 5.0 ;;
Thread.join t ;;

print_endline "Done!" ;;

This code will print “Hello world!” after 5 seconds. The main thread will wait for the thread to
finish before printing “Done!”, because of the Thread.join call.

Returning values from threads
As you can see above the Thread.create function returns a Thread.t object. So there is no direct
way of accessing the return value of the thread. For this we use the Event module. The Event
module provides a new_channel which can be used to create a communication channel between
threads.

It has two important methods:

1. Event.send: This method takes a channel and a value and sends the value to the channel.
2. Event.receive: This method takes a channel and attempts to receive a value from the channel

We use the Event.sync method to wait for the value to be received at the other end of the channel
(If we wrap it around a Event.send call). Or wait block until we can receive a value from the channel
(If we wrap it around a Event.receive call).

Note that this method blocks the thread until the underlying event is completed.

let my_costly_function (x, response_channel) =
(* Perform heavy calculations *)
let result = x * x in
Thread.delay 5.0 ;
(* Wait for the response to be read by someone *)
Event.sync (Event.send response_channel result) ;;

let response_channel = Event.new_channel () ;;

let t = Thread.create my_costly_function (5, response_channel) ;;

(* Wait for the response to be sent by the other thread *)
let result = Event.sync (Event.receive response_channel) ;;

print_endline (string_of_int result) ;;

Using this we can retrieve the return value of the thread. Note that we can only send one value
through the channel.

32

	FPV Tutorial - SS23
	About
	Found an error, or want to add something?
	Contributors

	Week 1: Implications, Assertions and Stronges Postconditions
	Implications
	Definition of Implications
	Truth Table
	Examples

	Assertions
	Example for MiniJava
	Strength of Assertions
	Definition of Assertions-Strength
	Special Assertions

	Strongest Postconditions
	Example

	Week 2: Preconditions, Postconditions and Local Consistency
	Weakest Preconditions
	Rules
	Example

	Local Consistency
	Example Local Consistency

	Week 3: Loop Invariants
	What is a loop invariant?
	The Problem with Loops
	Finding a Loop Invariant
	Evaluating different Loop Invariants
	Example Loop Invariants

	Tips for Finding a Loop Invariant

	Week 4: Termination Proofs
	Why are Termination Proofs Necessary?
	What is a Termination Proof?
	How to do a Termination Proof?

	Week 5: OCaml
	Basic Syntax
	Comments
	Variables
	Functions
	Tuples
	Lists
	Records
	If-then-else
	Pattern Matching

	Example Programs
	Advanced Hello World

	Debuging OCaml
	Using the #use command in utop

	Week 6: List Module
	Lists in OCaml
	Example Length

	Binary Search Tree
	Binary Search Tree in OCaml

	Week 7: Advanced List Operations
	List Reduce
	List.fold_left
	List.fold_right

	Week 8: Lazy Lists
	Lazy lists in OCaml
	Partial Application

	Week 9: Side Effects, Units and Exceptions
	Side Effects
	Example File IO

	Exceptions

	Week 10: Modules
	10.1 Module Types
	10.2 Module
	10.3 Functors

	Week 11: Big Step Semantics
	Big Step for OCaml Expressions
	Tuple
	List
	Global Definition
	Local Definition
	Function Call
	Pattern Matching
	Built-in Operators

	Example

	Week 12: Equational Reasoning
	Example: Prove that fact n = n * fact (n - 1)

	Week 13: Threads
	Returning values from threads

